Sudoku Mix Ups

In addition to normal sudoku, each grid doubles as another type of puzzle. \backslash
Sample instructions are given.

Sudoku/Archipelago

S: Each row and column has every number 1-4
A: Form a chain of islands connected diagonally where each number is the size of the island and water cannot form 2×2 areas.

* When you figure out the size of the island with the star in the archipelago, mark the star that number in the sudoku.

$\mathbf{1}$		\star		$\mathbf{1}$		\star	
	$\mathbf{1}$				$\mathbf{1}$		
$\mathbf{2}$		$\mathbf{4}$		$\mathbf{2}$		$\mathbf{4}$	

Sudoku/One Ring

S: Each row and column has every number 0-3
O : Form a chain along the lines of the grid. The numbers in the grid tell how many of the surrounding sections of wall are part of the chain. The chain is one single loop with no intersections or branches.

* Stars are always outside the loop in One Ring/Slither Link puzzles.

$\mathbf{3}$		$\mathbf{0}$		$\mathbf{3}$		$\mathbf{0}$	$\boldsymbol{\star}$
	$\mathbf{3}$				$\mathbf{3}$		
		$\mathbf{2}$	$\mathbf{3}$			$\mathbf{2}$	$\mathbf{3}$

Sudoku/Echolocation

S: Each row and column has every number 2-5
E: Some squares in the grid are walls, and some are passages. Numbered squares are passages and tell how many squares of passages can be seen from that location in the four orthogonal directions (including the numbered square itself). The passages are all connected orthogonally.

* Stars denote location of walls. One of them is given.

		4				4	
3				3			
			2		\star		2
	2	5			2	5	

Created by David Millar on April 18, 2006.
Updated April $19^{\text {th }} 2006$. In the $2^{\text {nd }}$ puzzle I put the star on the wrong side... sorry!

